13 research outputs found

    Laser treatment in diabetic retinopathy

    Get PDF
    Diabetic retinopathy is a leading cause of visual impairment and blindness in developed countries due to macular edema and proliferative diabetic retinopathy (PDR). For both complications laser treatment may offer proven therapy: the Diabetic Retinopathy Study demonstrated that panretinal scatter photocoagulation reduces the risk of severe visual loss by >= 50% in eyes with high-risk characteristics. Pan-retinal scatter coagulation may also be beneficial in other PDR and severe nonproliferative diabetic retinopathy (NPDR) under certain conditions. For clinically significant macular edema the Early Treatment of Diabetic Retinopathy Study could show that immediate focal laser photocoagulation reduces the risk of moderate visual loss by at least 50%. When and how to perform laser treatment is described in detail, offering a proven treatment for many problems associated with diabetic retinopathy based on a high evidence level. Copyright (c) 2007 S. Karger AG, Basel

    The ChromaTest, a digital color contrast sensitivity analyzer, for diabetic maculopathy: a pilot study

    Get PDF
    BACKGROUND: To assess the ability of the Chromatest in investigating diabetic maculopathy. METHOD: Patients with Type 2 diabetes and no concurrent ocular pathology or previous laser photocoagulation were recruited. Visual acuities were assessed followed by colour contrast sensitivity testing of each eye using Chromatest. Dilated fundoscopy with slit lamp biomicroscopy with 78 D lens was then performed to confirm the stage of diabetic retinopathy according to the Early Treatment Diabetic Retinopathy Study. RESULTS: 150 eyes in 150 patients were recruited into this study. 35 eyes with no previous laser photocoagulation were shown to have clinically significant macular oedema (CSMO) and 115 eyes with untreated non-proliferative diabetic retinopathy (NPDR) on fundus biomicroscopy. Statistical significant difference was found between CSMO and NPDR eyes for protan colour contrast threshold (p = 0.01). Statistical significance was found between CSMO and NPDR eyes for tritan colour contrast threshold (p = 0.0002). Sensitivity and specificity for screening of CSMO using pass-fail criterion for age matched TCCT results achieved 71% (95% confidence interval: 53-85%) and 70% (95% confidence interval: 60-78%), respectively. However, threshold levels were derived using the same data set for both training and testing the effectiveness since this was the first study of NPDR using the Chromatest CONCLUSION: The ChromaTest is a simple, cheap, easy to use, and quick test for colour contrast sensitivity. This study did not achieve results to justify use of the Chromatest for screening, but it reinforced the changes seen in tritan colour vision in diabetic retinopathy
    corecore